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Vlasov Equation (see J.J. Barnard, Introductory Lectures):

S1:  Vlasov Model: Transverse Vlasov model for a coasting, single species beam 

with electrostatic self-fields propagating in an applied focusing lattice:

Particle Equations of Motion: 

Hamiltonian (see S.M. Lund, lectures on Transverse Particle Equations of Motion):

Poisson Equation:

 + boundary conditions on 

charge, mass 

 axial relativistic factors 

transverse particle coordinate, angle 

single particle distribution

single particle Hamiltonian
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Hamiltonian expression of the Vlasov equation:

In formal dynamics, a “Poisson Bracket” notation is frequently employed: 

Poisson Bracket

Using the equations of motion: 
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Review: Focusing lattices, continuous and periodic 

(simple piecewise constant):

Occupancy

Syncopation Factor

Lattice Period

Solenoid description

carried out implicitly in

Larmor frame 

[see Lund and Bukh, 

PRST- Accel. and Beams 7, 

024801 (2004), Appendix A]
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Continuous focusing

Quadrupole focusing

Solenoidal focusing (in Larmor frame variables)

Example Hamiltonians:
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Review: Undepressed particle phase advance σ
0 
is typically employed to 

characterize the applied focusing strength of periodic lattices:

Undepressed phase advance

x-orbit without space-charge satisfies Hill's equation

2 x 2 Transfer 

Matrix from 
to

Single particle (and centroid) stability requires:

Analogous equations hold in the y-plane
[Courant and Snyder, Annals of Phys.  3, 1 (1958)]
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S2: Vlasov Equilibria: Plasma physics-like approach is to resolve 

the system into an equilibrium + perturbation and analyze stability

Equilibrium constructed from single-particle constants of motion C
i

equilibrium

0

Comments:

Equilibrium is an exact solution to Vlasov's equation that does not change in 

4D phase-space as s advances

- Projections of the distribution can evolve in s in general cases

Particle conversation constraints are in the presence of (possibly s-varying) 

applied  and space-charge forces

-  Highly non-trivial!

-  Only one exact solution known for s-varying focusing: 

the KV distribution to be analyzed shortly in this lecture.  
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// Example: Continuous focusing

no explicit s dependance

0 0

//

Showing that                                  exactly satisfies Vlasov's equation for 

continuous focusing 
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Typical single particle constants of motion:

Transverse Hamiltonian for continuous focusing: 

Canonical angular momentum for rotationally invariant systems: 

Axial kinetic energy for systems with no acceleration: 

More on other classes of constraints later ...

(in Larmor frame variables

  for solenoidal focusing)
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Plasma physics approach to beam physics:
Resolve: 

equilibrium perturbation

Comments:

Attraction is to parallel the impressive successes of plasma physics

- Gain insight into preferred state of nature

Beams are born off a source and may not be close to an equilibrium condition 

- Appropriate single particle constants of the motion unknown for 

    periodic focusing lattices other than the (unphysical) KV distribution

Intense beam self-fields and finite radial extent vastly complicate equilibrium 

description and analysis of perturbations

-  It is not clear if smooth Vlasov equilibria exist in periodic focusing  

- Higher model detail vastly complicates picture!

If system can be tuned to more closely resemble a relaxed, equilibrium, one 

might expect less deleterious effects based on plasma physics analogies

and carry out equilibrium + stability analysis 
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S3: The KV Equilibrium Distribution
[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., 1959]

Free-space self field solution within the beam (see Appendix A)

Assume a uniform density elliptical beam in a periodic focusing lattice

Particle equations of motion within the beam (Hill's equation if edge radii given):

Line-Charge:

Perveance:number 

density n

 

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 16

If we regard the envelope radii as specified functions of s, then these equations of 

motion are Hill's equations familiar from elementary accelerator physics:

Suggests Procedure:

Calculate Courant-Snyder invariants under assumptions made

Construct a distribution function of Courant-Snyder invariants that generates 

the uniform density elliptical beam projection assumed

-  Nontrivial step: guess and show that it works

Resulting distribution will be an equilibrium that does not change 4D form as 

a function of s
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Review (1): The Courant-Snyder invariant of Hill's equation

[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied 

focusing fields:

As a consequence of Floquet's theorem, the solution can be cast in phase-

amplitude form:

where is the periodic solution to

   is a phase function given by 

 and    are constants set by initial conditions at
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Review (2): The Courant-Snyder invariant of Hill's equation

From this formulation it follows immediately that

or

square and add equations to obtain the Courant-Snyder invariant

 Simplifies interpretation of dynamics 

 Extensively used in accelerator physics 
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Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations:

where

identifies the Courant-Snyder invariant

initial conditions yield:

Analogous equations hold for the y-plane
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The KV envelope equations:

Define maximum Courant-Snyder invariants:

These values must correspond to the beam-edge:

The equations for w
x
 and w

y
 can then be rescaled to obtain the familiar 

KV envelope equations for the matched beam envelope
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Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear 

combination of these Courant-Snyder invariants that generates the correct 

uniform density elliptical beam needed for consistency with the assumptions:

 Delta function means the sum of the x- and y-invariants is a constant 

 Other forms would not generate the needed uniform density elliptical

   beam projection  
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The KV equilibrium is constructed from the Courant-Snyder invariants:

KV equilibrium distribution:

This distribution generates (see proof in Appendix B) the correct uniform density

elliptical beam:

Dirac delta function

Obtaining this form consistent with the assumptions

 demonstrates full self-consistency of the KV equilibrium distribution.

-  Full 4-D form of the distribution does not evolve in s

-  Projections of the distribution can (and generally do!) evolve in s
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Comment on notation of integrals:

- 2nd forms useful for systems with azimuthal spatial or annular symmetry 

Spatial

Angular

Cylindrical Coordinates:

Angular

Cylindrical Coordinates:
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Comment on notation of integrals (continued):

Axisymmetry simplifications

Spatial: for some function

Cylindrical Coordinates:

Angular

Cylindrical Coordinates:

Angular: for some function
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Moments of the KV distribution can be calculated directly from the distribution 

to further aid interpretation:

Envelope edge radius:

rms edge emittance (maximum Courant-Snyder invariant):

Full 4D average:

Restricted angle average:

Coherent flows (within the beam, zero otherwise):

Angular spread (x-temperature, within the beam, zero otherwise):
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Summary of 1st and 2nd order moments of the KV distribution:

All 1st and 2nd order

moments not listed 

vanish, i.e., 
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Canonical transformation illustrates KV distribution structure:

[Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B]

Phase-space transformation:

Courant-Snyder invariants in the presence of beam space-charge are then simply:

and the KV distribution takes the simple, symmetrical form:

from which the density and other projections can be more easily (see Appendix

B) calculated:
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KV Envelope equation

The envelope equation reflects low-order force balances

Applied

Focusing

Lattice

Space-Charge

Defocusing

Perveance

Thermal

Defocusing

Emittance

Envelope equation is a projection of the 4D invariant distribution

Most important basic design equation for transport lattices with high space-charge 

intensity

- Simplest consistent design equations incorporating applied focusing,

 space-charge defocusing, and thermal defocusing forces

- Starting point of almost all practical machine design!

Instabilities of envelope equations are well understood and real (to be covered: 

lectures on Centroid and Envelope Description of Beams)

- Must be avoided for reliable machine operation

Terms:

Matched Solution
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Solenoidal Focusing FODO Quadrupole Focusing

The matched solution to the KV envelope equations reflects the symmetry of the 

focusing lattice and must in general be calculated numerically

Parameters

The matched beam is the most radially compact solution to the envelope 

equations rendering it highly important for beam transport
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Beam symmetries of a matched KV equilibrium beam in a periodic FODO 

transport lattice

x-y

x-x'

y-y'

Projection

area:

area:

area:

(CS Invariant)

(CS Invariant)
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KV model shows that particle orbits in the presence of space-charge can

be strongly modified – space charge slows the orbit response: 

Matched envelope:

Equation of motion for x-plane “depressed” orbit in the presence of space-charge:

All particles have the same value of depressed phase advance:
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Depressed particle x-plane orbits within a matched KV beam in a periodic 

FODO quadrupole channel for the matched beams previously shown

Solenoidal Focusing (Larmor frame orbit):

FODO Quadrupole Focusing:
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Depressed phase advance within a matched beam

Normalized space charge strength Cold Beam

(space-charge dominated)

Warm Beam

(kinetic dominated)

Depressed particle phase advance provides a convenient 

measure of space-charge strength
For simplicity take (plane symmetry in average focusing and emittance)
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For example matched envelope presented earlier:

Undepressed phase advance:

Depressed phase advance:

Solenoidal Focusing (Larmor frame orbit):

repeat periods
4.5

22.5

22.5 periods

4.5 periods

Periods for

360 degree 

phase advance
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The rms equivalent beam model helps interpret general beam evolution in

terms of an “equivalent” local KV distribution

For the same focusing lattice, replace any beam charge  density by a 

uniform density KV beam in each axial slice (s) using averages calculated from 

the actual “real” beam distribution with:

rms equivalent beam:

real distribution
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Comments on rms equivalent beam concept:

The emittances will generally evolve in s

- Means that the equivalency must be recalculated in every slice as the

   emittances evolve

- For reasons to be analyzed later (lectures on Kinetic Stability of Beams), 

   this evolution is often small 

Concept is highly useful

- KV equilibrium properties well understood and are approximately correct

   to model lowest order “real” beam properties
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Sacherer expanded the concept of rms equivalency by showing that the 

equivalency works exactly for beams with elliptic symmetry space-charge

[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

the KV envelope equations

remain valid when (averages taken with the full distribution): 

The emittances must, in general, evolve in s under this model 

(see SM Lund lectures on Transverse Kinetic Stability)

Based on:

see J.J. Barnard intro. lectures
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Further comments on the KV equilibrium: Distribution Structure

Equilibrium distribution:

Forms a highly singular hyper-shell in 4D phase-space

Singular distribution has large “Free-Energy” to drive many instabilities

- Low order envelope modes are physical and highly important 

(see lectures on Centroid and Envelope Descriptions of Beams)

Perturbative analysis shows strong collective instabilities

- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)

- Higher order instabilities (collective modes) have unphysical aspects 

due to (delta-function) structure of distribution and must be applied 

with care (see lectures on Kinetic Stability of Beams)

- Instabilities can cause problems if the KV distribution is employed 

as an initial beam state in self-consistent simulations

Schematic:
4D singular hyper-shell surface
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Preview: lecture on Centroid and Envelope Descriptions of Beams

Instability bands of the KV envelope equation are well understood in

 periodic focusing channels and must be avoided in machine operation

[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]

Solenoid (     = 0.25) Quadrupole FODO (     = 0.70)

Envelope Mode Instability Growth Rates
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Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses

Not very different from what is often observed in experimental measurements and 

self-consistent simulations of stable beams with strong space-charge

Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge
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Coherent (flow): Incoherent (temperature):

Angular spreads within the beam:

Further comments on the KV equilibrium:

Angular Spreads: Coherent and Incoherent

Coherent flow required for periodic focusing to conserve charge

Temperature must be zero at the beam edge since the distribution edge is sharp

Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid 

model interpretation of the (kinetic) KV distribution
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Further comments on the KV equilibrium:The KV distribution is the only known exact equilibrium solution for linear 

periodic focusing channels that is valid for finite space-charge:

Low order properties of the distribution are physically appealing 

Illustrates relevant Courant-Snyder invariants in simple form

- Later arguments demonstrate that these invariants should be a reasonable

          approximation for beams with strong space charge

Strong Vlasov instabilities associated with the KV model render the distribution 

inappropriate for use in high levels of detail:

Instabilities are not all physical and render interpretation of results difficult

- Difficult to separate physical from nonphysical effects in simulations

Possible Research Problem (unsolved in 40+ years!):

Can a valid Vlasov equilibrium be constructed for a smooth, nonuniform density 

distribution in a linear, periodic focusing channel?

Not clear what invariants can be used or if any can exist

- Nonexistence proof would also be significant

Lack of a smooth equilibrium would not imply that real machines cannot work!
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Because of a lack of theory for a smooth, self-consistent distribution that would 

be more physically appealing than the KV distribution we will examine smooth

distributions in the idealized continuous focusing limit (after an analysis of the 

continuous limit of the KV theory):

Allows more classic “plasma physics” like analysis 

Illuminates physics of intense space charge 

Lack of continuous focusing in the laboratory will prevent over generalization 

of results obtained
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S4:  Continuous Focusing limit of the KV Equilibrium Distribution

Continuous focusing, symmetric beam

envelope equation reduces to

Particle orbit in the beam:

Space-charge tune depression (rate of phase advance same everywhere, L
p
 arb.) 

Undepressed betatron wavenumber

Depressed 

betatron wavenumber
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Continuous Focusing KV Equilibrium – 

Undepressed and depressed particle orbits

envelope

undepressed

depressed

Particle Orbits in Beam

Much simpler in details than the periodic focusing case,

but qualitatively similar in that space-charge “depresses” the

rate of particle phase advance 
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Continuous Focusing KV Beam – Equilibrium Distribution Form

Using

for the beam line charge and 

the full elliptic beam KV distribution can be expressed as 

where 
 --  Hamiltonian

 --  Hamiltonian at beam edge



 

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 47

Equilibrium distribution

then it is straightforward to explicitly calculate (see homework problems)

Density:

Temperature:

Density Temperature
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Continuous Focusing KV Beam – Comments

For continuous focusing,           is a single particle constant of the motion (see 

problem sets), so it is not surprising that the KV equilibrium form reduces to a 

delta function form of 

For non-continuous focusing channels there is no simple relation between 

Courant-Snyder type invariants and  

Because of the delta-function distribution form, all particles in the continuous 

focusing KV beam have the same transverse energy with  

Several textbook treatments of the KV distribution derive continuous focusing 

versions and then just write down (if at all) the periodic focusing version based on 

Courant-Snyder invariants.   This can create a false impression that the KV 

distribution is a Hamiltonian-type invariant in the general form.  
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S5: Equilibrium Distributions in Continuous Focusing Channels 

Take

Real transport channels have s-varying focusing functions

For a rough correspondence to physical lattices take:

A valid family of equilibria can be constructed for any choice of function:

φ must be calculated consistently from the nonlinear Poisson equation:

Solutions generated will be steady-state 

It can be shown that the Poisson equation only has solutions with 

The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous 

focusing.  In periodic focusing channels and  vary in s and the 

Hamiltonian is not a constant of the motion.
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The axisymmetric Poisson equation simplifies to:

Introduce a streamfunction

then

and system axisymmetry can be exploited to calculate the beam density as 

Then the Poisson equation can be recast in terms of the stream function as 
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To characterize a choice of equilibrium function , the (transformed)

Poisson equation must be solved 

Equation is, in general, highly nonlinear rendering the procedure difficult

Some general features of equilibria can still be understood in terms of moments 

Apply rms equivalent beam picture
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Moment properties of continuous focusing equilibrium distributions 

Equilibria satisfy the rms equivalent matched beam envelope equation:

where

Describes average radial force balance of particles
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Parameters used to define

should be cast in terms of

for use in accelerator applications.  The rms equivalent beam equations can be 

used to carry out needed parameter eliminations. Such eliminations can be highly

nontrivial due to the nonlinear form of the equations.

A kinetic temperature can also be calculated

which is also related to the emittance,  
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Choices of continuous focusing equilibrium distributions: 

Common choices for analyzed in the literature:

1) KV (already covered)

2) Waterbag (to be covered) 

[see M. Reiser, Charged Particle Beams, (1994)]

3) Thermal (to be covered) 

[see M. Reiser; Davidson, Noneutral Plasmas,  1990]

Infinity of choices can be made for an infinity of papers!

 Fortunately, range of behavior can be understood with a few reasonable choices
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S6: Continuous Focusing: The Waterbag Equilibrium Distribution:

[see Reiser, Theory and Design of Charged Particle Beams, Wiley (1994)]

Waterbag distribution:

The physical edge radius       of the beam will be related to the edge Hamiltonian:

Edge  

Hamiltonian

Employing the general formulation, the Poisson equation for this 

choice can be analytically solved simplifying analysis. 

Details of Waterbag analysis to be included in later editions of notes.  
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1) Density profile at fixed line charge and focusing strength
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Density

Profile

Edge of 

distribution

in phase-space

2) Phase-space boundary at fixed line charge and focusing strength
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Scaled parameters for examples
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S7: Continuous Focusing: The Thermal Equilibrium Distribution:

[see Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990) and

 Reiser, Theory and Design of Charged Particle Beams, Wiley (1994)]

In an infinitely long continuous focusing channel, collisions will eventually relax 

the beam to thermal equilibrium.   The Fokker-Planck equation predicts that the 

unique Maxwell-Boltzmann distribution describing this limit is:

Thermodynamic temperature 

(energy units)

Beam propagation time in transport channel is generally short relative to collision time,

inhibiting full relaxation

Collective effects may enhance relaxation rate 

- Wave spectrums likely large for real beams and enhanced by 

  transient and nonequilibrium effects

- Random errors acting on system may enhance and lock-in phase mixing 

single particle Hamiltonian of beam 

in rest frame (energy units)
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Continuous focusing thermal equilibrium distribution

Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann 

distribution (careful on frame for temperature definition!) is:

The density can then be conveniently calculated in terms of a scaled stream 

function:

Temperature 

(energy units, lab frame)

 (reference choice)

on-axis density

and the x- and y-temperatures are equal and spatially uniform with:
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Scaled Poisson equation for continuous focusing thermal equilibrium

To describe the thermal equilibrium density profile, the Poisson equation must be 

solved.   In terms of the scaled streamfunction: 

Here,  
Debye length formed  

from the peak, on-axis

beam density

Scaled radial coordinate

in rel. Debye lengths

Plasma frequency formed

from on-axis beam density

Dimensionless parameter relating

the ratio of applied to space-charge

defocusing forces

Equation is highly nonlinear and must, in general, be solved numerically

Scaled solutions depend only on the single dimensionless parameter ∆
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Numerical solution of scaled thermal equilibrium Poisson equation in

terms of a normalized  density

Equation is highly nonlinear and must, in general, be solved numerically

- Dependance on ∆ is very sensitive

- For small ∆, the beam is nearly uniform in the core

Edge fall-off is always in a few Debye lengths when ∆ is small

- Edge becomes very sharp at fixed beam line-charge 
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Parameters constraints for the thermal equilibrium beam 

Parameters employed in to specify the equilibrium are (+ kinematic 

factors): 

Parameters preferred for accelerator applications: 

Needed constraints can be calculated directly from the equilibrium: 

Also useful,  

Integral function

of        only
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These constraints must, in general, be solved numerically 

 Useful to probe system sensitivities in relevant parameters

Examples:

1) rms equivalent beam tune depression as a function of ∆

Small tune depression corresponds to extremely small values of ∆
- Special numerical methods must be employed to calculate

R.H.S function 

of ∆ only
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2) Density profile at fixed line charge and focusing strength

Density profile changes with scaled T 

- Low values yields a flat-top   => 

- High values yield a Gaussian like profile  => 
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3) Distribution contours at fixed line charge and focusing strength

Particles will move approximately force-free till approaching the edge where it is 

rapidly bent back (see Debye screening analysis this lecture)

Radial 

scales 

change
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Scaled parameters for examples 2) and 3)
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Comments on continuous focusing thermal equilibria

From these results it is not surprising that the KV model works well for real beams 

with strong space-charge (i.e, rms equivalent              small) since the edges of a 

smooth thermal distribution become sharp  

Thermal equilibrium likely overestimates the edge with since T = const, whereas a 

real distribution likely becomes colder near the edge

However, the beam edge contains strong nonlinear terms that will cause deviations 

from the KV model  

Nonlinear terms can radically change the stability properties (stabilize fictitious 

higher order KV modes)

Smooth distributions contain a spectrum of particle oscillation frequencies that are 

amplitude dependent
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S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam

[Davidson, Physics of Nonneutral Plasmas, Addison Wesley (1990)]

We will show that space-charge and the applied focusing forces of the lattice 

conspire together to Debye screen interactions in the core of a beam with high 

space-charge intensity 

Will systematically derive the Debye length employed in the intro lectures of J.J. 

Barnard

The applied focusing forces are analogous to a stationary neutralizing species in

a plasma

// Review:

Free-space field of a “bare” test line-charge at the origin 

solution (use Gauss' theorem) shows long-range interaction

//
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Place a small test line charge at r = 0 in a thermal equilibrium beam:

Thermal Equilibrium Test Line-Charge
Set:

Thermal Equilibrium potential with no test line-charge

Perturbed potential from test line-charge

Assume thermal equilibrium adapts adiabatically to the test line-charge:

Yields:

Assume a relatively cold beam so the density is flat near the test line-charge:
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Debye radius formed from peak,

on-axis beam density

Derive a general solution by connecting solution very near the test charge with the 

general solution for r nonzero:

Near solution:

This gives:

Negligible  --->

The free-space solution can be immediately applied:
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Connection and General Solution:

The delta-function term vanishes giving:

This is a modified Bessel equation of order 0 with general solution:

Modified Bessel Func, 1st kind

Modified Bessel Func, 2nd kind

General Exterior Solution:

Use limiting forms:
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General solution shows Debye screening of test charge in the core of the beam:

Order Zero

Modified Bessel Function

Screened interaction does not require overall charge neutrality!

- Beam particles redistribute to screen bare interaction

- Beam behaves as a plasma and expect similar collective waves etc.

Same result for all smooth equilibrium distributions and in 1D, 2D, and 3D 

- Reason why lower dimension models can get the “right” answer for

   collective interactions in spite of the Coulomb force varying with dimension

Explains why the radial density profile in the core of space-charge dominated beams 

are expected to be flat

Comparison shows that we must choose for connection to the near solution and 

regularity at infinity:
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S9: Continuous Focusing: The Density Inversion Theorem

Shows x and x' dependancies are strongly connected in an equilibrium

For:

calculate the beam density

differentiate:

Assume that n(r) is specified, then the Poisson equation can be integrated:

bounded distribution

0



 

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 75

For n(r) = const

This suggests that ψ(r) is monotonic in r when  d n(r)/dr is monotonic.  Apply the 

chain rule:

For specified monotonic n(r) the density inversion theorem can be applied with 

the Poisson equation to calculate the corresponding equilibrium 

Density Inversion Theorem

Comments on density inversion theorem:
Shows that the x and x' dependance of the distribution are inextricably linked for an 

equilibrium distribution function

- Not so surprising -- equilibria are highly constrained

If  then the kinetic stability theorem (see Kinetic Stability 

lectures) shows that the equilibrium is also stable
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// Example: Application of the inversion theorem to the KV equilibrium

// 

use:

Expected 

KV form

property of delta-function:

root of f(x)

Similar application of derivatives with respect to Courant-Snyder invariants 

can “derive” the needed form for the KV distribution of an elliptical beam 

without guessing. 
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The KV and continuous models are the only (or related to simple transforms 

thereof) known exact beam equilibria.  Both suffer from idealizations that render 

them inappropriate for use as initial distribution functions for modeling of real 

accelerator systems:

KV distribution has an unphysical structure giving rise to well known instabilities 

with unphysical manifestations

Continuous focusing is inadequate to model real accelerator lattices with periodic 

or s-varying focusing forces

There is much room for improvement in this area, including study if smooth 

equilibria exist in periodic focusing and implications if no exact equilibria exist.

S10: Comments on the plausibility of smooth,  Vlasov equilibria in 

periodic transport channels
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Large envelope flutter associated with strong focusing can result in a rapid high-

order oscillating force imbalance acting on edge particles of the beam 

Temperature Flutter

Elliptical rms Equivalent Beam

r
x

r
y

Example Systems (r
max

/r
min

)2

AG Trans: σ
0

= 60o ~ 2.5

AG Trans:  σ
0
 = 100o ~ 4.9

Matching Section ~ 15 Possible

Temperature asymmetry in beam will rapidly fluctuate with lattice periodicity 

- Converging plane => Warmer 

- Diverging plane => Colder

Collective plasma wave response slower than lattice frequency

- Beam edge will not be able to adapt rapidly enough

- Collective waves will be launched from lack of local force balance near the edge

Characteristic Plasma Frequency of Collective Effects

Continuous Focusing Estimate
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The continuous focusing equilibrium distribution suggests that varying Debye 

screening together with envelope flutter would require a rapidly adapting beam 

edge in a smooth, periodic equilibrium beam distribution

Continuous Focusing Thermal Equilibrium Beam

Self Consistent Beam Edge
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It is clear from these considerations that if smooth “equilibrium” beam 

distributions exist for periodic focusing, then they are highly nontrivial

Real beams are born off a source that can be simulated 

- Propagation length can be relatively small in linacs 

Transverse confinement can exist without an equilibrium 

- Particles can turn at large enough radii forming an edge

- Edge can oscillate from lattice period to lattice period

   without pumping to large excursions

Would a nonexistence of an equilibrium distribution be a problem:

Might not preclude long propagation with preserved 

statistical beam quality

Even approximate equilibria would help sort out complicated processes:

Reduce transients and fluctuations can help understand processes in simplest form

- Allows more “plasma physics” type analysis and advances

Beams in Vlasov simulations are often observed to “settle down” to a fairly regular 

state after an initial transient evolution 

- Extreme phase mixing leads to an effective relaxation
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These slides will be corrected and expanded for reference and any future 

editions of the US Particle Accelerator School class:

Beam Physics with Intense Space Charge, by J.J. Barnard and S.M. Lund

Corrections and suggestions are welcome.  Contact:

SMLund@lbl.gov

Steven M. Lund 

Lawrence Berkeley National Laboratory

BLDG 47 R 0112

1 Cyclotron Road 

Berkeley, CA 94720-8201

 (510) 486 – 6936

Please do not remove author credits in any redistribuitons of class material.
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